Math 4 Exam 2 September 16, 1997

Nar	ne		InstructorClass Time
Sho	w all	work for partial credit. Be neat.	
1. (6)	Find	the equation of the line that is perpendicular to $2x + 3y = 12$ and ha	s the same y-intercept.
			1
2.	Writ	e the equation of the line that passes through the given points.	
(3)	a)	(3,-1) (-4,-1)	
			2. a)
(3)	b)	(2,4) (4,-4)	
			b)
(3)	c)	(2,-1) (2,-6)	
			,
			c)
3. (8)	Find	a mathematical expression to model the following: z varies directly as the square of x and inversely as y .	

If $z = \frac{3}{2}$ when x = 3 and y = 4, what is k?

k = _____

- 4. Let $f(x) = 4 2x^2$; g(x) = 2 x; $h(x) = \begin{cases} 3 x^2, & x \ge 0 \\ 3 + 2x, & x < 0 \end{cases}$. Calculate and simplify the following. Show intermediate steps.
- (4) a) $(f \circ g)(2.3)$

a) _____

(4) b) h(3)-h(-3)

b) _____

(4) c) $\frac{f(x+2)-f(x)}{2}$

c) _____

 $(4) d) \left(\frac{g}{h}\right) - 1)$

d) _____

(4) e) $(g \circ h)(-1)$

(5)

e) _____

5. Find the domain of $f(x) = \frac{\sqrt{2x+3}}{x^2-5x}$.

5

- 6. Is the given function even or odd?
- (3) a) $f(x) = -x^4 + 2x^2 1$

6. a)

(3) b)
$$f(x) = 2x^3 + 3x^2$$

(3) c)
$$f(x) = 4x^3 + 3x$$

Over which interval(s) is the function increasing? $f(x) = 2x^3 + 3x^2 - 12x$ 7.

$$f(x) = 2x^3 + 3x^2 - 12x$$

Use the graph of $y = x^3$ to write an equation for the function y = f(x) as graphed. 8.

(5)

Given $f(x) = \sqrt{2x-1}$, state the domain of f(x). Find $f^{-1}(x)$. 9. (7)

10. Let f(x) = 3 - x and $g(x) = x^3$. Find $(g^{-1} \circ f^{-1}) - 5$.

(8)

10

11. (8)		in $y = -2x^2 - 4x - 5$. It is in standard form for a parabola and determine the maximum or minimum value.
		11
		equation:
12. (5)	a)	Find the quadratic function that has a maximum point at $(-1,2)$ and passes through $(0,1)$.
		a)
(5)	b)	Find the quadratic function whose graph opens upward and has x-intercepts at (-4,0) and(1,0).
(5)		

Bonus: Find a relationship between x and y so that (x, y) is equidistant from the two points (4,-1) and (-2,3).